【分布式编程】二——基于Hadoop的MapReduce程序

此前配置好分布式Hadoop环境,此篇主要讲解通过Intellij IDEA编写分布式MapReduce程序以及利用Hadoop实现词频统计

系统环境

  • 虚拟机:VirtualBox
  • Linux:Ubuntu 16.04 LTS
  • Hadoop 2.7.5
  • IDE:Intellij IDEA
  • JDK 1.8.0_151

    安装Intellij及破解

安装Intellij IDEA

破解Intellij IDEA

创建Hadoop工程

创建新工程

  1. 打开Intellij IDEA,创建一个新工程

    mark

  2. 选择Java项目,并添加JDK路径

    mark

添加依赖包

点击File-Project Structure

打开后点击左侧Modules,然后点击Dependencies

mark

点击右侧+,选择JARs or directories,将下图所有依赖包的目录导入

mark

【注】/usr/hadoop-2.7.5是Hadoop安装目录

编写代码

新建一个类名为WordCount,代码如下

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

配置编译环境

点击Run-Edit Configuration

点击左上角+,然后点击Application

mark

mark

  • Name,即该运行配置的名字,这里命名为RunHadoop

  • Main Class,即需要运行的主类,这里使用的默认包,所以填写WordCount

  • Program arguments,即运行时需要输入的参数,此处填写参数为hdfs://master:9000/data/input/README.txt hdfs://master:9000/output/

    此处,第一个参数为输入文件路径,第二个参数为输出文件路径。

    master:9000分布式Hadoop环境core-site.xml配置文件中fs.default.name的值

    /data/input/README.txt分布式Hadoop环境中利用

    hdfs dfs -mkdir -p /data/input
    hdfs dfs -put README.txt /data/input

    创建并上传到HDFS系统中的文件路径。

【注】若hdfs://master:9000/output已经存在,需要手动删除

hdfs dfs -rm -r /output

查看运行结果

web界面查看

通过http://localhost:50070查看各个结点运行状况

mark